17 décembre 2020 | International, Technologies propres, Méga données et intelligence artificielle, Fabrication avancée 4.0, Systèmes autonomes (Drones / E-VTOL), Conception et essais virtuels, Fabrication additive

“Innovations for FCAS”: Airbus concludes cooperative pilot phase with startup companies in Germany

“Innovations for FCAS”: Airbus concludes cooperative pilot phase with startup companies in Germany

Munich, 09 December 2020 – Airbus has concluded a pilot phase of the “Innovations for FCAS” (I4 FCAS) initiative which aims at involving German non-traditional defence players -covering startups, small to medium enterprises (SMEs) and research institutes- in the development of Future Combat Air System (FCAS). This initiative which was launched in April 2020 was funded by the German Ministry of Defence.

“The initiative shows that FCAS does not compare with previous larger defence projects. By implementing young and innovative players, some of whom have never been in touch with the defence sector, we ensure to leverage all competencies available for a game-changing high-tech programme such as FCAS”, said Dirk Hoke, Chief Executive Officer of Airbus Defence and Space. “It will also foster technological spill-overs between the military and civil worlds. It is our ambition to continue the initiative in 2021 and beyond, and make it a cornerstone of our FCAS innovation strategy.”

During the pilot phase, 18 innovative players worked on 14 projects in different areas, covering the whole range of FCAS elements: combat cloud, connectivity, new generation fighter, remote carriers, system of systems, sensors. Among these 14 projects, Airbus engineers have worked closely with SMEs and startups to achieve concrete results such as:

· A first flight-test approved launcher of an Unmanned Aerial Vehicle (UAV) from of a transport aircraft. This project is the result of a cooperation between Airbus as A400M integrator, Geradts GmbH for the launcher and SFL GmbH from Stuttgart for UAV integration and supported by DLR simulations. An agile design and development approach allowed for rapid prototyping and flight readiness in only 6 months.

· A secure combat cloud demonstrator: a first time transfer of secured operating systems into a cloud environment. Kernkonzept GmbH from Dresden together with Airbus CyberSecurity have shown how IT security can be used for highest security requirements on a governmental cloud system.

· A demonstrator of applied artificial intelligence on radio frequency analysis. Hellsicht GmbH from Munich trained their algorithms on Airbus-provided datasets, allowing for a unique capability of real time fingerprinting of certain emitters, such as radars.

As Europe's largest defence programme in the coming decades, FCAS aims at pushing the innovation and technological boundaries. Its development will bring disruptive technologies such as artificial intelligence, manned-unmanned teaming, combat cloud or cybersecurity to the forefront.

https://www.airbus.com/newsroom/press-releases/en/2020/12/innovations-for-fcas-airbus-concludes-cooperative-pilot-phase-with-startup-companies-in-germany.html

Sur le même sujet

  • Speech Recognition and AI Help Take the Pressure off Aircrew

    14 octobre 2020

    Speech Recognition and AI Help Take the Pressure off Aircrew

    Air accidents have decreased in recent years, but when they do occur, the crew's workload is usually at its highest level. Therefore, augmenting crew performance during high workload periods is of great importance and can help maintain flight safety. Aircrew workloads peak when faced with a combination of unpredictable situations: meteorological conditions; high-density traffic; system failures; and flight operations like take-off, climb, descent, approach and landing. The amount of information and number of actions that need to be processed by the crew may become unmanageable, affecting flight safety. The EU-funded VOICI project addressed this threat by developing an intelligent 'natural crew assistant' for the cockpit environment. The system comprises three main technologies, namely sound recording, speech recognition and artificial intelligence. This includes a cockpit-embedded speech-processing system that understands aviation terminology, as well as an array of low-noise optical microphones and optimised array processing for it. The VOICI system also features a new and more efficient speech synthesis, adapted to aviation terminology and noise levels. For further information see the IDTechEx report on Voice, Speech, Conversation-Based User Interfaces 2019-2029: Technologies, Players, Markets. Assessed under realistic conditions Project partners aimed to provide a proof-of-concept demonstrator capable of listening to all communications in the cockpit, both between crew members, and between crew and air traffic control. "The VOICI system should recognise and interpret speech content, interact with the crew, and fulfil crew requests to simplify crew tasks and reduce cognitive workload," outlines project coordinator, Tor Arne Reinen. Researchers also developed a realistic audio evaluation environment for technology experiments. This facilitated the development of the crew assistant and enabled evaluation of its performance, including the speech capture and recognition technologies for use in a noisy cockpit, together with the intelligent dialogue system with automatic speech synthesis as its main output. The audio testing environment involved a 3D physical model of a Falcon 2000S cockpit, including loudspeaker reproduction of noise recordings from a real flight. "We have demonstrated that the crew assistant is feasible under the very high noise levels of an aviation cockpit," Reinen explains. Multiple benefits Speech capture is achieved through both the pilot's headset and an ambient microphone array. Speech recognition using deep neural networks and the dialog system were developed explicitly for the cockpit environment and include aviation terminology and robustness to high levels of background noise. The systems function independently of cloud-based systems and employ dedicated language models for the cockpit scenario. According to Reinen, all the algorithms underlying the dialog system have been implemented and tested: from the Natural Language Understanding unit that understands natural requests to the Dialogue Core which handles the conversation flow. "Particular emphasis has been placed on the ability of the voice assistant to use contextual data," he notes. By reducing crew workload, VOICI will contribute to optimisation of operations, flight safety and crew awareness; better maintenance; reduced cost of operations; and generally higher efficiency and lower stress. "VOICI comprises both small and medium sized enterprises (SMEs) and research institutes, and cooperation within the consortium will contribute to innovation and job creation," Reinen points out. https://www.onartificialintelligence.com/articles/21880/speech-recognition-and-ai-help-take-the-pressure-off-aircrew?rsst2id=193

  • How The Pentagon Is Reaching Small Suppliers

    1 mai 2020

    How The Pentagon Is Reaching Small Suppliers

    Jen DiMascio The Pentagon is employing new ways to track and funnel dollars to small- and medium-sized aviation suppliers hit hard by a drop-off in their commercial business since the novel coronavirus took hold. One way has been to accelerate up-front progress payments to prime contractors. Ellen Lord, the Pentagon's acquisition chief, announced April 30 that in this week alone, the Defense Department processed more than $1.2 billion out of $3 billion to defense contractors in accelerated payments. The acceleration was enabled by a March 20 memo which lifted the amount that large contractors could receive before delivering a contracted item from 80%-90% and for small contractors from 90%-95%. Lord singled out Lockheed Martin for praise for committing to speed $450 million to its supply chain. As those payments are being released, the U.S. Air Force is studying the needs of small suppliers and charting the flow of those progress payments through the industrial base, service officials said during an April 29 Aviation Week MRO webinar. After the first COVID-19 stimulus package was released, Col. Kevin Nalette, vice director, 448th Supply Chain Management Wing, Air Force Sustainment Center, said his office was asked to find out how much money small companies would need to maintain a constant flow of work to continue to support the defense sector. They had two days to ask contractors–the third- and fourth-tier “mom-and-pop shops” whose work becomes an end item purchased somewhere up the stream. The majority of defense vendors do more work–55% or more–for commercial aviation businesses. “As soon as the commercial sector shut down, we had an amazing ability. We now had their full attention,” Nalette said. “When you come to their attention with basically free cash, it's amazing what you can get done.” Tony Baumann, director of contracting for the Air Force Support Center, is capturing data about where the money and progress payments are going. And he is tracking some 2,700 contracts to find out the COVID-related constraints they are operating under. “My guys talked to all of them,” Baumann said, and they stay in contact so that the Air Force knows when a supplier needs to shut down to clean a business. Then Nalette's group is looking at whether that closure might impact deliveries of critical supplies or inventory. That has caused the Air Force to rewrite service contracts using new authorities granted by the CARES Act COVID-relief bill passed by Congress to keep multiple teams of service personnel on contract so that one group can work and another can be ready to backfill so that no group would experience a 14-day interruption, Baumann said. All of those changes are being tracked and coded based on COVID-19, he added. https://aviationweek.com/defense-space/budget-policy-operations/how-pentagon-reaching-small-suppliers

  • Blast, un programme soutenu par Starburst qui veut faire exploser les startups françaises du spatial

    27 novembre 2020

    Blast, un programme soutenu par Starburst qui veut faire exploser les startups françaises du spatial

    Plusieurs spécialistes de l'innovation se sont alliés pour créer Blast, le premier programme français d'accélération de jeunes pousses à fort contenu technologique dans les domaines de l'aéronautique, du spatial et de la défense afin de « faire émerger et d'accompagner une vingtaine de start-up par an ». Le programme réunit Starburst, premier accélérateur mondial dédié aux start-up de l'aéronautique, du spatial et de la défense (ASD), l'Office national d'études et de recherches aérospatiales (Onera), l'École Polytechnique et la SATT Paris-Saclay, dont le but est de développer la mise en oeuvre des innovations issues de la recherche académique. À l'origine du projet, qui sera formellement lancé en janvier, le constat du « manque d'un programme constitué en France dédié à l'accompagnement des projets deep tech (portant sur des technologies très avancées, NDLR) pour le secteur » de l'aéronautique, de la défense et du spatial, expliquent ses promoteurs dans un communiqué. Si les jeunes pousses dans ces domaines sont particulièrement actives aux États-Unis ou encore en Israël, le mouvement doit être « être renforcé en Europe et particulièrement en France », estiment-ils. D'autant que l'aéronautique, le spatial et la défense « portent par nature les caractéristiques du deep tech: de fortes barrières à l'entrée, un cycle de développement long et complexe et un caractère disruptif fort en cas de succès ». Des levées de fonds d'amorçage prévues Le programme doit permettre d'accompagner des projets correspondant aux besoins de l'industrie et de les pérenniser par des contrats commerciaux et des collaborations avec les industriels ou instituts publics. « L'idée, c'est de créer plus de start-up pour alimenter les futurs programmes aéronautiques, spatiaux et de défense », résume François Chopard, fondateur de Starburst, qui assurera la coordination du programme. Les domaines visés sont notamment ceux de l'aviation décarbonée, les plateformes de mobilité aérienne urbaines, l'intelligence artificielle, les technologies portant sur l'autonomie (capteurs, fusion de données), les services informatiques dématérialisés (cloud) sécurisés ou encore le spatial. Des levées de fonds « d'amorçage de deux à trois millions d'euros » sont prévues. Blast est l'un des dix programmes sélectionnés par le gouvernement à l'issue d'un appel à projets d'accompagnement de start-up à fort contenu technologique dans le cadre du Programme d'investissements d'avenir (PIA) Doté d'un montant maximal global de 9,6 millions d'euros, le soutien public, via Bpifrance, permettra des subventions allant jusqu'à 50% du coût du projet pendant les deux premières années. https://www.frenchweb.fr/blast-un-programme-soutenu-par-starburst-qui-veut-faire-exploser-les-startups-francaises-du-spatial/410612

Toutes les nouvelles