June 3, 2021
Red 6, augmented realty fighter pilot training startup, raises $30 million
Red 6, an augmented reality fighter pilot training startup, has raised a $30 million round of financing.
December 17, 2020 | International, Clean technologies, Big data and Artifical Intelligence, Advanced manufacturing 4.0, Autonomous systems (Drones / E-VTOL), Virtual design and testing, Additive manufacturing
Munich, 09 December 2020 – Airbus has concluded a pilot phase of the “Innovations for FCAS” (I4 FCAS) initiative which aims at involving German non-traditional defence players -covering startups, small to medium enterprises (SMEs) and research institutes- in the development of Future Combat Air System (FCAS). This initiative which was launched in April 2020 was funded by the German Ministry of Defence.
“The initiative shows that FCAS does not compare with previous larger defence projects. By implementing young and innovative players, some of whom have never been in touch with the defence sector, we ensure to leverage all competencies available for a game-changing high-tech programme such as FCAS”, said Dirk Hoke, Chief Executive Officer of Airbus Defence and Space. “It will also foster technological spill-overs between the military and civil worlds. It is our ambition to continue the initiative in 2021 and beyond, and make it a cornerstone of our FCAS innovation strategy.”
During the pilot phase, 18 innovative players worked on 14 projects in different areas, covering the whole range of FCAS elements: combat cloud, connectivity, new generation fighter, remote carriers, system of systems, sensors. Among these 14 projects, Airbus engineers have worked closely with SMEs and startups to achieve concrete results such as:
· A first flight-test approved launcher of an Unmanned Aerial Vehicle (UAV) from of a transport aircraft. This project is the result of a cooperation between Airbus as A400M integrator, Geradts GmbH for the launcher and SFL GmbH from Stuttgart for UAV integration and supported by DLR simulations. An agile design and development approach allowed for rapid prototyping and flight readiness in only 6 months.
· A secure combat cloud demonstrator: a first time transfer of secured operating systems into a cloud environment. Kernkonzept GmbH from Dresden together with Airbus CyberSecurity have shown how IT security can be used for highest security requirements on a governmental cloud system.
· A demonstrator of applied artificial intelligence on radio frequency analysis. Hellsicht GmbH from Munich trained their algorithms on Airbus-provided datasets, allowing for a unique capability of real time fingerprinting of certain emitters, such as radars.
As Europe's largest defence programme in the coming decades, FCAS aims at pushing the innovation and technological boundaries. Its development will bring disruptive technologies such as artificial intelligence, manned-unmanned teaming, combat cloud or cybersecurity to the forefront.
June 3, 2021
Red 6, an augmented reality fighter pilot training startup, has raised a $30 million round of financing.
November 27, 2020
November 26, 2020 Imaginé par l'Onera, Polytechnique, la SATT Saclay et l'accélérateur Starburst, ce programme ambitionne d'accompagner 20 start-up par an. Blast. Explosion, en anglais. C'est aussi l'acronyme de « Boost and Leverage Aerospace and defence Technologies », le nom d'un nouveau programme français d'accélération, spécifiquement destiné aux start-up de l'aéronautique, du spatial et de la défense dont les idées, innovations et briques technologiques intéressent ces industries de souveraineté. À lire aussi :L'armée française sécurise une pépite de la tech convoitée par la CIA À l'origine de cette initiative, un constat en forme de paradoxe. La France ne manque ni d'ingénieurs, ni de laboratoires, ni d'universités, ni de centres de recherche au meilleur niveau mondial, et pourtant cette force de frappe peine à engendrer des start-up en grand nombre. De même, la France dispose d'une industrie aéronautique, spatiale et militaire de classe mondiale mais qui n'a pas toujours la ligne directe pour se connecter au monde des start-up. Et il n'existe pas de programme spécifique pour faire grandir les jeunes pousses du «deep-tech», les innovations de rupture utilisant des technologies avancées, dans ces trois domaines. Lire à partir de la source.... https://thereadersplanet.fr/startup-news/166937/lancement-de-blast-un-programme-dedie-aux-start-up-de-la-defense-et-de-laerospatial/
September 9, 2020
By Courtesy As the Army explores the potential of some advanced manufacturing methods and 3D-printed parts to maintain and sustain its aviation fleet, recently published guidance aims to strike a balance between safety, improvements to readiness and escalating costs. Advanced manufacturing refers to new ways of making existing products and the production of new products using advances in technology. Advanced manufacturing includes additive manufacturing, a process of joining materials to make parts from 3D-model data. Additive manufacturing differs from the traditional subtractive process that cuts away material to shape and produce parts. The U.S. Army Aviation and Missile Command recently published a policy memorandum addressing advanced manufacturing for Army aircraft parts, components and support products. “Evolving technologies create a unique challenge as we determine the airworthiness of parts when the data is immature, incomplete or even non-existent,” said AMCOM Commander Maj. Gen. Todd Royar, who serves as the Army's airworthiness authority, responsible for ensuring the safety of the service's aircraft components. As enduring aircraft, like the UH-60 Black Hawk helicopter, continue in service, the supply system with face challenges with obsolescence, meaning parts that are difficult to acquire or receive no bids from potential vendors to manufacture. As the Army keeps pace with technology, advanced manufacturing creates opportunities to optimize long-term sustainment efforts. The Army established a partnership recently with Wichita State University's National Institute for Aviation Research (NIAR) to create a “digital twin” of an aging Black Hawk model. “One of the primary tasks in this effort is to convert all legacy 2D drawings of this aircraft into modern 3D parametric models,” said John Tomblin, senior Vice-President for Industry and Defense Programs and Executive Director of NIAR at Wichita State University. “This will allow the Army to source parts that are out of production as well as use advanced techniques, such as additive manufacturing, to produce parts.” The digital twin opens a door to the 3D modeling and more opportunities to use parts made through additive manufacturing. The NIAR project is not the Army's only effort. Army Aviation is already using advanced manufacturing methods and 3D-printed parts to solve specific challenges. When several CH-47 helicopters experienced structural cracks at a certain portion of the frame assembly, an initial solution was to replace the entire frame assembly. “Replacing the entire assembly is a time-consuming task that also poses logistical challenges because replacements are difficult to obtain,” said AMCOM's Aviation Branch Maintenance Officer, Chief Warrant Officer 5 Michael Cavaco. Instead, engineers designed a solution to restore the cracked frames to their original strength by creating repair fittings using Computer-Aided Design models. “After five iterations of 3D-printing prototypes, test fit and model adjustments, a final design solution was achieved,” Cavaco said. Additionally, 3D printers have created several tools and shop aids that have benefitted the field. Many of these stand-alone items that support maintenance operations are authorized within Army technical manuals, depot maintenance work requirements or similar publications. While too early to predict overall cost and time savings, the advantages of advanced manufacturing are significant. The use of advanced manufactured parts will eliminate wait time on back-ordered parts that, ultimately, delay repairs. A key focus of AMCOM's AM policy is on inserting evolving technologies into enduring designs that have relied on traditional manufacturing processes throughout their acquisition lifecycle. However, future Aviation are benefiting as well from advanced manufacturing. The Improved Turbine Engine Program (ITEP) includes a number of advanced manufacturing elements. “ITEP benefits from advanced manufacturing include reduced cost, reduced weight, increased durability, and enhanced performance when compared to traditional manufacturing methods,” said Col. Roger Kuykendall, the project manager for Aviation Turbine Engines. “The benefits of AM stem from the unique capability to produce more complex hardware shapes while simultaneously reducing part count.” The fine details of airworthiness expectations asserted in this policy were crafted by a team of engineers at the U.S. Army Combat Capabilities Development Command Aviation and Missile Center, led by Chris Hodges, the current acting associate director for Airworthiness-Technology. Hodges said the new policy was drafted after his team collaborated with stakeholders from across the aviation enterprise, reaching across Army organizations and out to sister services and the Federal Aviation Administration. “We considered a lot of input and ultimately organized expectations and requirements by category, spanning from tools and shop aids to critical safety items,” Hodges said. “The resulting policy sets a solid foundation with room to grow and fill in details as the story evolves.” For Army aviation applications, advanced-manufactured parts and components will be managed under six categories that range from articles that support maintenance operations to those aviation critical safety items, whose failure would result in unacceptable risk. The designated categories prescribe for engineers and manufacturers the allowed materials and appropriate testing methodology for each particular part. The new guidance is not intended as a replacement for other existing policies that address advanced manufacturing. “We intend to be in concert with Army policies and directives that pertain to readiness, maintenance and sustainment,” Royar said. “Our policy provides a deliberate approach to ensure airworthiness and safety while determining where research and efforts may best supplement the supply chain and improve performance while balancing cost.” AMCOM Command Sgt. Major Mike Dove acknowledged the methodology must continue to mature in multiple areas before confidence grows in the ability to measure airworthiness qualification requirements for advanced-manufactured parts. “We fully support the maturation requirements for advanced-manufacturing technology, but not at the expense of flight safety,” Dove said. As Army aviation continues to pursue and include advanced-manufacturing methods, Royar noted the potential impact as the technology evolves. “Advanced manufacturing touches units, depots and the broader supply chain,” Royar said. “As we sustain our enduring aircraft and look to future systems, it is important that we keep pace with this and other emerging technologies for the sake of the warfighter.” https://www.army.mil/article/238868/new_policy_addresses_3d_parts_for_army_aircraft