21 janvier 2020 | International, Fabrication avancée 4.0

USAF base to use robotic technology to remove paint from A-10 aircraft

SHARE

A-10 aircraft maintenance

Corrosion control technicians with the 576th Aircraft Maintenance Squadron monitor two media blast robots as they strip paint off the first production A-10 aircraft. Credit: USAF / Todd Cromar.

The 576th Aircraft Maintenance Squadron is leveraging the robotic media blasting technology for the first time to remove paint from the A-10 aircraft at Hill Air Force Base (AFB) in the US.

With the use of the new robotic technology, the squadron is expanding its capacity by adding capability.

New-generation robots are used to strip paint from A-10 Thunderbolt II aircraft that arrive at Hill AFB for depot overhaul and maintenance.

The latest process is expected to reduce man-hours and increase safety by removing employees from the blasting atmosphere, resulting in time and costs savings.

576th Aircraft Maintenance Squadron director Tim Randolph said: “There are going to be across-the-board improvements, including a dramatic reduction in exposure to a Hexavalent Chromium dust environment.

“Savings will also be seen with reduced operating time and less power consumption, as well as reduced costs in material. We really haven't found a downside to this system.”

The new paint removal process is carried out by two robots, which each have four hose attachments that move independently along both sides of the aircraft.

576th Aircraft Maintenance Squadron Corrosion Control Flight chief James Gill said: “Compared to the manual paint stripping method, the robots use half the amount of blast media at half of the air pressure, while removing an extremely precise thickness, uniformly, across the entire aircraft surface.

“This translates into a process that is less stressful on the aircraft skins and saves money in media cost, while creating only half the waste stream.”

A new laser burn process is also being tested at the AFB on F-16 aircraft. The squadron expects the application of the process to the A-10s going forward.

Combined together, the three processes are capable of reducing the total time an aircraft spends in depot maintenance.

Last August, Boeing secured a potential $999m 11-year contract to deliver sustainment work on the USAF A-10 Thunderbolt II aircraft.

https://www.airforce-technology.com/news/usaf-base-robotic-technology/

Sur le même sujet

  • Impact of COVID-19 on commercial MRO

    24 avril 2020

    Impact of COVID-19 on commercial MRO

    Opinion: How COVID-19 Has Already Changed Everything David Marcontell April 17, 2020 Oliver Wyman To say that COVID-19 is having a devastating effect on aviation is an understatement. With hundreds of millions of people living under stay-at-home orders and unemployment rates in the U.S. and Europe rising faster than they ever have, global airline capacity in available seat-miles is down 59% compared to what it was at this time last year. The International Air Transport Association is forecasting airline losses of $252 billion—a tally that has been revised upward twice in the last six weeks. At my own firm, we cut our 2020 forecast for demand in the MRO market by $17-35 billion to reflect the nearly 11,000 aircraft that have been taken out of service and the 50% drop in daily utilization for those that are still flying. Oliver Wyman also lowered its projection for new aircraft deliveries by 50-60% versus 2019 after a comprehensive review of original equipment manufacturer (OEM) build projections versus airline demand. Deliveries for most current-production models are expected to drop 50% or more in 2021 and 2022. As a result, we project that it will be well into 2022 before the global MRO market might return to the size it was before COVID-19. This crisis has gone well past the point of a V-shaped recovery. Lasting damage has been done, and not unlike the Sept. 11, 2001, terrorist attacks or the 2008 global financial crisis, the behavior of governments, businesses and the public is likely to have been changed forever. Following 9/11, it took nearly 18 months for passenger traffic to return to its previous level, and when it finally did, travel looked very different than it had before the attacks. Passenger anxiety and the “hassle” factor associated with heightened airport security caused people to stay at home or drive. It took nearly a decade for the public to adjust to the new normal of commercial air travel. In a post-COVID-19 environment, it is not unrealistic to expect new screening protocols to be put in place to help manage the risk of reinfection or an emergence of new hot spots. Already, international public health officials are considering such tools as immunization passports and body temperature scanning (already in use by some airports) that would be applicable to everyone on every flight, much like our security screening is today. In addition, virtual meeting technology—adoption of which is expanding quickly out of necessity—is now becoming business as usual for work and socializing, and it's unlikely we will turn away from it entirely even when the disease is a memory. These combined influences will undoubtedly slow passenger traffic growth. COVID-19 also will change the industry's labor landscape. For the past several years, the aviation industry has been concerned with a looming labor shortage. Before the coronavirus crisis, regional airlines were already being forced to shut down because they couldn't find enough pilots; others were trimming flight schedules. A stunning 90% of the Aeronautical Repair Station Association's 2019 survey reported difficulty finding enough technicians—a situation that cost ARSA members more than $100 million per month in unrealized revenue. COVID-19 will change all that. With the global fleet expected to have 1,200 fewer airplanes flying in 2021 than 2019, the industry will need roughly 18,000 fewer pilots and 8,400 fewer aviation maintenance technicians in 2021. The depth of the cutbacks is the equivalent of grounding 1-2 years' worth of graduates from training and certification programs around the world. How many would-be pilots and mechanics may now be dissuaded from pursuing a career in aviation with those statistics? If people turn away now, when aviation comes back it may be a few years before that candidate pipeline is restored. Another example of permanent change from aviation's last cataclysmic event was the consolidation of the OEM supply chain after the Great Recession. Tier 1 and Tier 2 suppliers went on a buying spree, gobbling up smaller companies. While the post-COVID-19 business environment will undoubtedly be hazardous for these same suppliers, the consolidation of the past decade has put them in a better position to survive this upheaval. Can the same be said for the MRO community, which comprises many smaller, privately held and family-owned companies? I suspect not. While governments are scrambling to provide financial relief for small businesses hurt by the global economic shutdown, these efforts will likely fall short. The result might well be a further consolidated MRO community dominated by the OEMs plus a handful of fully integrated firms that provide support to both OEMs and airlines. COVID-19 is a painful reminder that aviation always will be a cyclical business. With each cycle, the industry renews itself, performing better than before. One should expect this cycle to be no different. The biggest question is: How long will this cycle last? —David Marcontell, Oliver Wyman partner and general manager of its Cavok division, has aftermarket experience with leading OEMs, airlines, MROs and financial services.

  • Saab trials 3D-printed part on Gripen for battlefield repairs - Skies Mag

    30 mars 2021

    Saab trials 3D-printed part on Gripen for battlefield repairs - Skies Mag

    Saab successfully conducted a trial which marked the first time an exterior 3D-printed part has been flown on a Gripen.

  • Générer de l’innovation avec le Japon : Québec 2022
Toutes les nouvelles