Back to news

April 24, 2020 | International, Clean technologies, Big data and Artifical Intelligence, Advanced manufacturing 4.0, Autonomous systems (Drones / E-VTOL), Virtual design and testing, Additive manufacturing

What To Watch For As A&D Companies Plan Future With COVID-19

What To Watch For As A&D Companies Plan Future With COVID-19

Michael Bruno April 21, 2020

Companies have good quarters and bad quarters, but rarely does a whole industry sound like it just got sucker-punched. That's what the next few weeks will be like in the aerospace and defense sector, and for sure there will be headlines describing industrial carnage as the industry gasps for air and works to recover after COVID-19.

The truth is the aerospace and defense (A&D) supply chain suddenly is far too large for what is needed, maybe by a quarter or a third of excess capacity. As a result, quick or methodical cutbacks in manufacturing and services are expected throughout the syndicates that make airliners, business jets and other aircraft. As public companies report their latest quarterly financial results in late April and May, they will have to address the year ahead and offer insight into their response plans.

Unfortunately, business as usual prior to COVID-19 is not expected until 2022 or later, according to numerous analysts and advisors. And that is just too long to carry extra financial costs, which means all levels will feel pain. “The COVID-19 decline is a serious risk for commercial OEM plays—Boeing, Spirit AeroSystems, Allegheny Technologies, Hexcel, Howmet Aerospace, Triumph Group and Carpenter Technology,” Cowen analysts say. “Aftermarket ‘relative safe havens' Honeywell International, Heico and TransDigm Group also face stiff near-term headwinds, with more serious risks at General Electric.”

On the same subject

  • JUST IN: New Navy Lab to Accelerate Autonomy, Robotics Programs

    September 9, 2020

    JUST IN: New Navy Lab to Accelerate Autonomy, Robotics Programs

    9/8/2020 By Yasmin Tadjdeh Over the past few years, the Navy has been hard at work building a new family of unmanned surface and underwater vehicles through a variety of prototyping efforts. It is now standing up an integration lab to enable the platforms with increased autonomy, officials said Sept. 8. The Rapid Integration Autonomy Lab, or RAIL, is envisioned as a place where the Navy can bring in and test new autonomous capabilities for its robotic vehicles, said Capt. Pete Small, program manager for unmanned maritime systems. “Our Rapid Autonomy Integration Lab concept is really the playground where all the autonomy capabilities and sensors and payloads come together, both to be integrated ... [and] to test them from a cybersecurity perspective and test them from an effectiveness perspective,” Small said during the Association for Unmanned Vehicle Systems International's Unmanned Systems conference, which was held virtually due to the ongoing COVID-19 crisis. Robotics technology is moving at a rapid pace, and platforms will need to have their software and hardware components replaced throughout their lifecycles, he said. In order to facilitate these upgrades, the service will need to integrate the new autonomy software that comes with various payloads and certain autonomy mission capabilities with the existing nuts-and-bolts packages already in the unmanned platforms. “The Rapid Autonomy Integration Lab is where we bring together the platform software, the payload software, the mission software and test them,” he explained. During testing, the service will be able to validate the integration of the software as well as predict the performance of the unmanned vehicles in a way that “we're sure that this is going to work out and give us the capability we want,” Small said. The RAIL concept will rely on modeling-and-simulation technology with software-in-the-loop testing to validate the integration of various autonomous behaviors, sensors and payloads, he said. “We will rely heavily on industry to bring those tools to the RAIL to do the testing that we require,” he noted. However, the lab is not envisioned as a single, brick-and-mortar facility, but rather a network of cloud-based infrastructure and modern software tools. “There will be a certain footprint of the actual software developers who are doing that integration, but we don't see this as a big bricks-and-mortar effort. It's really more of a collaborative effort of a number of people in this space to go make this happen," Small said. The service has kicked off a prototype effort as part of the RAIL initiative where it will take what it calls a “third-party autonomy behavior” that has been developed by the Office of Naval Research and integrate it onto an existing unmanned underwater vehicle that runs on industry-made proprietary software, Small said. Should that go as planned, the Navy plans to apply the concept to numerous programs. For now, the RAIL is a prototyping effort, Small said. “We're still working on developing the budget profile and ... the details behind it,” he said. “We're working on building the programmatic efforts behind it that really are in [fiscal year] '22 and later.” The RAIL is part of a series of “enablers” that will help the sea service get after new unmanned technology, Small said. Others include a concept known as the unmanned maritime autonomy architecture, or UMAA, a common control system and a new data strategy. Cmdr. Jeremiah Anderson, deputy program manager for unmanned underwater vehicles, said an upcoming industry day on Sept. 24 that is focused on UMAA will also feature information about the RAIL. “Half of that day's agenda will really be to get into more of the nuts and bolts about the RAIL itself and about that prototyping effort that's happening this year,” he said. “This is very early in the overall trajectory for the RAIL, but I think this will be a good opportunity to kind of get that message out a little bit more broadly to the stakeholders and answer their questions.” Meanwhile, Small noted that the Navy is making strides within its unmanned portfolio, citing a “tremendous amount of progress that we've made across the board with our entire family of UVS and USVs.” Rear Adm. Casey Moton, program executive officer for unmanned and small combatants, highlighted efforts with the Ghost Fleet Overlord and Sea Hunter platforms, which are unmanned surface vessels. The Navy — working in cooperation with the office of the secretary of defense and the Strategic Capabilities Office — has two Overlord prototypes. Fiscal year 2021, which begins Oct. 1, will be a particularly important period for the platforms, he said. “Our two Overlord vessels have executed a range of autonomous transits and development vignettes,” he said. “We have integrated autonomy software automation systems and perception systems and tested them in increasingly complex increments and vignettes since 2018.” Testing so far has shown the platforms have the ability to perform safe, autonomous navigation in according with the Convention on the International Regulations for Preventing Collisions at Sea, or COLREGS, at varying speeds and sea states, he said. “We are pushing the duration of transits increasingly longer, and we will soon be working up to 30 days,” he said. “Multi-day autonomous transits have occurred in low- and high-traffic density environments.” The vessels have already had interactions with commercial fishing fleets, cargo vessels and recreational craft, he said. The longest transit to date includes a round trip from the Gulf Coast to the East Coast where it conducted more than 181 hours and over 3,193 nautical miles of COLREGS-compliant, autonomous operation, Moton added. Both Overload vessels are slated to conduct extensive testing and experimentation in fiscal year 2021, he said. “These tests will include increasingly long-range transits with more complex autonomous behaviors,” he said. "They will continue to demonstrate automation functions of the machinery control systems, plus health monitoring by a remote supervisory operation center with the expectation of continued USV reliability." The Sea Hunter will also be undergoing numerous fleet exercises and tactical training events in fiscal year 2021. “With the Sea Hunter and the Overlord USVs we will exercise ... control of multiple USVs, test command-and-control, perform as part of surface action groups and train Navy sailors on these platforms, all while developing and refining the fleet-led concept of operations and concept of employment,” Moton said. https://www.nationaldefensemagazine.org/articles/2020/9/8/navy-testing-new-autonomy-integration-lab

  • Speech Recognition and AI Help Take the Pressure off Aircrew

    October 14, 2020

    Speech Recognition and AI Help Take the Pressure off Aircrew

    Air accidents have decreased in recent years, but when they do occur, the crew's workload is usually at its highest level. Therefore, augmenting crew performance during high workload periods is of great importance and can help maintain flight safety. Aircrew workloads peak when faced with a combination of unpredictable situations: meteorological conditions; high-density traffic; system failures; and flight operations like take-off, climb, descent, approach and landing. The amount of information and number of actions that need to be processed by the crew may become unmanageable, affecting flight safety. The EU-funded VOICI project addressed this threat by developing an intelligent 'natural crew assistant' for the cockpit environment. The system comprises three main technologies, namely sound recording, speech recognition and artificial intelligence. This includes a cockpit-embedded speech-processing system that understands aviation terminology, as well as an array of low-noise optical microphones and optimised array processing for it. The VOICI system also features a new and more efficient speech synthesis, adapted to aviation terminology and noise levels. For further information see the IDTechEx report on Voice, Speech, Conversation-Based User Interfaces 2019-2029: Technologies, Players, Markets. Assessed under realistic conditions Project partners aimed to provide a proof-of-concept demonstrator capable of listening to all communications in the cockpit, both between crew members, and between crew and air traffic control. "The VOICI system should recognise and interpret speech content, interact with the crew, and fulfil crew requests to simplify crew tasks and reduce cognitive workload," outlines project coordinator, Tor Arne Reinen. Researchers also developed a realistic audio evaluation environment for technology experiments. This facilitated the development of the crew assistant and enabled evaluation of its performance, including the speech capture and recognition technologies for use in a noisy cockpit, together with the intelligent dialogue system with automatic speech synthesis as its main output. The audio testing environment involved a 3D physical model of a Falcon 2000S cockpit, including loudspeaker reproduction of noise recordings from a real flight. "We have demonstrated that the crew assistant is feasible under the very high noise levels of an aviation cockpit," Reinen explains. Multiple benefits Speech capture is achieved through both the pilot's headset and an ambient microphone array. Speech recognition using deep neural networks and the dialog system were developed explicitly for the cockpit environment and include aviation terminology and robustness to high levels of background noise. The systems function independently of cloud-based systems and employ dedicated language models for the cockpit scenario. According to Reinen, all the algorithms underlying the dialog system have been implemented and tested: from the Natural Language Understanding unit that understands natural requests to the Dialogue Core which handles the conversation flow. "Particular emphasis has been placed on the ability of the voice assistant to use contextual data," he notes. By reducing crew workload, VOICI will contribute to optimisation of operations, flight safety and crew awareness; better maintenance; reduced cost of operations; and generally higher efficiency and lower stress. "VOICI comprises both small and medium sized enterprises (SMEs) and research institutes, and cooperation within the consortium will contribute to innovation and job creation," Reinen points out. https://www.onartificialintelligence.com/articles/21880/speech-recognition-and-ai-help-take-the-pressure-off-aircrew?rsst2id=193

  • Saab trials 3D-printed part on Gripen for battlefield repairs - Skies Mag

    March 30, 2021

    Saab trials 3D-printed part on Gripen for battlefield repairs - Skies Mag

    Saab successfully conducted a trial which marked the first time an exterior 3D-printed part has been flown on a Gripen.

All news