

Space Technology Development Program STDP

Walter Peruzzini Head, Technology Development

Overview

- Mandate
- Goals and Objectives
- Benefits
- Priority Technologies
- Implementation
- Current and Planned Mechanisms

Mandate

To develop strategic technologies that have a strong potential for having a positive impact on meeting the future needs of the Canadian Space Program and the growth of the Canadian space industry.

Goals & Objectives

The objectives of the STDP are to:

- Reduce the technological uncertainties associated with planned Canadian space missions;
- Stimulate industrial innovation in spacerelated technologies in preparation for potential future space missions;
- ➤ To support the development of space technologies for the purpose of increasing the commercial potential of Canadian space companies.

Benefits

- Supports the necessary technology development for Canada's future missions;
- A better understanding of the technological challenges associated with planned space missions and thus the reduction of technological uncertainties linked to these challenges;
- Supports the development of innovative, emerging, enabling and promising technologies
- The capitalizing of innovation and market opportunities; as well as,
- The creation of gainful employment and the attraction of highly qualified personnel to the space sector

Priority Technologies

Based on:

- Future missions' specific technology requirements and roadmaps
- Canadian leadership positioning
- Technologies with a potential for positive industrial impact

Delivery Mechanisms

- Periodic Request for Proposals (RFP)
 - Typically issued on an annual basis in the fall;
 - CSA provides detailed statements of work;
 - Implemented through PSPC R&D contracts;
 - Reduce the technological uncertainties associated with planned Canadian space missions.
 - Next RFP is planned for the end of September, early October and posting (on Buyandsell.gc.ca) should last 6 weeks

Implementation

- Contributions Announcement of Opportunities (AO's)
 - Implemented through non-refundable contributions;
 - Supporting up to 75% of eligible incurred costs;
 - To support the development of Canadian industrial capabilities in the area of space technologies for the purpose of increasing the commercial potential of Canadian space companies.
 - Last AO was issued last winter, 50 agreements have been but in place
 - Next AO is planned for Fall 2021

Innovative Solutions Canada

- Fuel the development and adoption of technological innovation in Canada.
- Support the growth of innovative Canadian SMEs.
- Foster greater industry-research collaboration through the release of challenges for solutions that address key GoC priorities.
- Provide departments and agencies with opportunities to develop new capabilities to meet their R&D needs and thereby advance government priorities.

Investment Context

- CSA Commitment to ISC Programme: \$ 1.3 M/year (minimum)
 - > Managed by STDP
- ISC approach:
 - ➤ Based on « Challenges »; i.e. statement of a key issue for which a solutions is sought, but not specified.
 - Phase 1: Multiple contracts up to \$150k each (proof of concept)
 - Phase 2: Selected contract(s) up to \$1M each (prototyping)

Status on Challenge 1

Artificial Intelligence and Big Data Analytics for Advanced Autonomous Space Systems

- 51 proposals received
- 5 contracts awarded for Phase 1 in Fall 2019
 - Ending in early March
- 1 contract (or potentially 2) will be selected for Phase 2
 - Down selection will be performed in September
- Phase 2 contract(s) will be conducted over 2020/21- 2021/22

Proposed Challenges

Space Robotics Challenges

1. Low mass volume and power, high reliability Short Range Proximity Sensor for space robotics collision prevention.

Operable in vacuum, immune to direct sun light, and with low false alarm rate.

2. Visual AI for space robotics end-effector and pitch plane Obstacle Detection.

Currently performed by ground controllers for MSS. ISS model and MSS camera imagery will be made available to bidders interested in real life conditions.

3. AI for auto-diagnostics and early failure prediction for space robotic sub-systems.

MSS sub-system telemetry data will be made available to bidders interested in real life conditions.

asc-csa.gc.ca

